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Abstract

We present the first fifth-order, semi-discrete central-upwind method for ap-
proximating solutions of multi-dimensional Hamilton-Jacobi equations. Unlike
most of the commonly used high-order upwind schemes, our scheme is formulated
as a Godunov-type scheme. The scheme is based on the fluxes of Kurganov-
Tadmor and Kurganov-Noelle-Petrova, and is derived for an arbitrary number of
space dimensions. A theorem establishing the monotonicity of these fluxes is pro-
vided. The spatial discretization is based on a weighted essentially non-oscillatory
reconstruction of the derivative. The accuracy and stability properties of our
scheme are demonstrated in a variety of examples. A comparison between our
method and other fifth-order schemes for Hamilton-Jacobi equations shows that
our method exhibits smaller errors without any increase in the complexity of the
computations.

Key words. Hamilton-Jacobi equations, central schemes, semi-discrete schemes, high
order, WENO, CWENO, monotone fluxes.

AMS(MOS) subject classification. Primary 65M06; secondary 35L99.

1 Introduction

We are interested in approximating solutions of multi-dimensional Hamilton-Jacobi (HJ)
equations of the form

φt + H(∇φ) = 0, ~x = (x1, . . . xd) ∈ R
d, (1.1)

where φ = φ(~x, t), and the Hamiltonian, H, depends on ∇φ and possibly on x and t.
Solutions of (1.1) develop discontinuous derivatives even for smooth initial data. This
loss of regularity presents difficulties both in the analysis of these equations as well as
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in numerically approximating their solutions. Significant advances in the theoretical
understanding of the HJ equations were achieved in the last two decades. Most notable
is the introduction of the so-called “viscosity solution” which provides a consistent def-
inition of a weak solution of (1.1) past the time where the discontinuities develop. See
[2, 7, 8, 9, 10, 14, 25, 26] and the references therein.

In spite of the large number of applications for HJ equations, there has been very
little activity in numerically approximating their solutions. This is surprising in partic-
ular given the equivalence between the HJ equations and hyperbolic conservation laws,
and the flourishing field of numerical methods for conservation laws. Converging first
order methods for the HJ equations were introduced by Souganidis in [33]. High order
upwind methods were introduced by Osher, Sethian and Shu in [31, 32]. The schemes in
[31, 32] were based on an “essentially non-oscillatory” (ENO) reconstruction by Harten
[13] and a monotone numerical flux. A more compact upwind scheme which is based on
a weighted ENO (WENO) reconstruction is due to Jiang and Peng [15]. WENO recon-
structions were originally introduced in the context of numerical schemes for hyperbolic
conservation laws in [16, 29]. They increase the order of accuracy by using wider stencils
in smooth regions while automatically switching into one-sided stencils in regions that
include singularities. All these reconstructions include nonlinear limiters in order to
control the spurious oscillations that might develop in the solution. For extensions to
unstructured grids see [1, 34].

A class of Godunov-type approximations for HJ equations was recently introduced
by Lin and Tadmor in [27, 28]. Their first- and second-order central schemes were
based on the first-order Lax-Friedrichs scheme [11] and the second-order Nessyahu-
Tadmor scheme [30] for approximating solutions of hyperbolic conservation laws. Cen-
tral schemes incorporate internal averaging over discontinuities and hence they do not
require Riemann solvers. Moreover, systems can be solved without a characteristic de-
composition, and this makes central schemes simple, robust, and particularly suitable
for treating complex geometries. We developed in [4] an efficient version of the central
schemes of [27, 28] for multi-dimensional HJ equations. Our first- and second-order,
non-oscillatory, non-staggered schemes were designed to scale well with an increasing
dimension. Efficiency was obtained by carefully choosing the location of the evolution
points and by using a one-dimensional projection step. In [5, 6] we introduced third-
and fifth-order fully-discrete central schemes, which were the first central schemes for
HJ equations of accuracy greater than two. High-order accuracy was obtained using
a suitable high-order WENO-type reconstruction. We would like to note that ENO
and WENO interpolants were already used in central schemes for conservation laws
[3, 22, 23, 24].

One way to improve the above schemes [4, 5, 6, 27, 28] is to use semi-discrete methods
to reduce the numerical dissipation. In principle, one expects to obtain a semi-discrete
scheme from a fully-discrete scheme in the limit as ∆t → 0. Unfortunately, this limit
does not exist for the fully-discrete schemes in [4, 5, 6, 27, 28]. A different strategy
is to consider at every grid point more precise information regarding the local speed
of propagation, which can then be used to develop a different class of fully-discrete
approximations that do enjoy a semi-discrete limit. An estimate of the local speed of
propagation at every grid point can then be used to determine new points where the
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solution is evolved to the next time step. The distance of these evolution points from the
original grid points is proportional to the time step ∆t, and hence it is possible to obtain
a semi-discrete scheme in the limit ∆t → 0. This strategy was first used to develop semi-
discrete central schemes for hyperbolic conservation laws: a second-order method was
developed by Kurganov and Tadmor in [21], and a third-order method by Kurganov
and Levy in [18]. Semi-discrete schemes for HJ equations were then introduced in [20],
and further improved in [19] by utilizing a more accurate estimate of the local speed of
propagation, hence reducing numerical dissipation. We would like to stress that both
schemes [19, 20] are only second-order accurate.

In this paper we present fifth-order, semi-discrete, Godunov-type, central schemes
for HJ equations. These are the first high-order semi-discrete central schemes for HJ
equations.1 These schemes are generated by considering a general formulation of semi-
discrete schemes along the lines of [19, 20], and augmenting it with an appropriate
high-order WENO-type reconstruction.

The structure of this paper is as follows. In Section 2 we develop a one-dimensional
fifth-order semi-discrete scheme. In the semi-discrete limit, ∆t → 0, the fifth-order
WENO interpolant we obtain turns out to be identical to the one used in upwind meth-
ods [15]. The flux we use is the Kurganov-Noelle-Petrova flux [19], or a variant of the
simpler Kurganov-Tadmor flux [20]. We state a theorem establishing the monotonicity
of these fluxes, the proof of which is left to the appendix. We observe that for the
one-dimensional linear advection, our method boils down to an upwind scheme with
a Lax-Friedrichs flux. In Section 3 we generalize the method to an arbitrary number
of space dimensions, writing out the schemes explicitly for two and three dimensions
in Section 3.2. We conclude in Section 4 with several numerical examples in one, two
and three space dimensions that confirm the expected order of accuracy as well as the
high-resolution nature of our scheme. We compare the results of these numerical tests
with our fully-discrete fifth-order scheme [6] and with the scheme of Jiang and Peng [15].
Our numerical results show that the new method we present in this paper has stability
properties that are equivalent to those of [15]. The relative L1 errors we obtain in all
our simulations are consistently smaller than those in [15], in some cases as much as an
order of magnitude smaller.

Acknowledgment: The work of D. Levy was supported in part by the National Science
Foundation under Career Grant No. DMS-0133511. We would like to thank Brian Biegel
of NASA Ames Research Center for helpful comments.

2 A One-Dimensional Scheme

2.1 Semi-Discrete Central Schemes for HJ Equations

Consider the one-dimensional HJ equation of the form

φt(x, t) + H (φx) = 0, x ∈ R. (2.1)

1high-order is assumed to be an order greater than two.



4 S. Bryson and D. Levy

xi xi+1
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+
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−
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Figure 2.1: The regions considered in Godunov-type central schemes. The solution is
evolved at xi ± a±i ∆t. The solution ϕn+1

i is obtained by averaging ϕ(xi ± a±i ∆t, tn+1).

We are interested in approximating solutions of (2.1) subject to the initial data φ(x, t=
0) = φ0(x). We briefly review the construction of semi-discrete central schemes for
(2.1) presented in [19] (see also [20]). For simplicity we assume a uniform grid grid in
space and time with mesh spacings, ∆x and ∆t, respectively. Denote the grid points
by xi = i∆x, tn = n∆t. Let ϕn

i denote the approximate value of φ (xi, t
n), and at a

fixed time tn let ϕ′i denote the approximate value of the spatial derivative φx (xi, t
n). We

define the forward and backward differences ∆+ϕi := ϕi+1 − ϕi and ∆−ϕi := ϕi −ϕi−1.
Assume that the approximate solution at time tn, ϕn

i is given, and that a continuous
piecewise-polynomial interpolant ϕ̃(x, tn) was reconstructed from ϕn

i . The construction
of ϕ̃(x, tn) will be addressed below. At every grid point xi we then estimate the maximal
speed of propagation to left, a+

i , and to the right, a−i . For a convex Hamiltonian, these
one-sided local speeds of propagation are estimated by

a+
i = max

{
H ′
(
ϕ′−i
)
, H ′

(
ϕ′+i
)
, 0
}

, a−i =
∣
∣min

{
H ′
(
ϕ′−i
)
, H ′

(
ϕ′+i
)
, 0
}∣
∣ . (2.2)

Here, ϕ′±i are the one-sided derivatives, defined as

ϕ′±i := lim
∆t→0

ϕ̃x

(
xi ± a±i ∆t, tn

)
.

Remark. Our sign convention in the definition of a±i in (2.2) differs from [19]. This
choice of signs simplifies the derivation of the scheme in the multi-dimensional setup.

We evolve ϕ̃ according to (2.1) at the evolution points xi ± a±i ∆t. The time step,
∆t, is chosen so that the reconstruction is smooth at these points (see Figure 2.1). A
Taylor expansion in time of ϕ̃

(
xi ± a±i ∆t, tn+1

)
results with

ϕ̃
(
xi ± a±i ∆t, tn+1

)
= ϕ̃

(
xi ± a±i ∆t, tn

)
−∆tH

(
ϕ̃x

(
xi ± a±i ∆t, tn

))
+O

(
∆t2
)
.(2.3)

A weighted average is then used to re-project ϕ̃
(
xi ± a±i ∆t, tn+1

)
onto the original grid

point xi,

ϕn+1
i =

a+
i

a+
i + a−i

ϕ̃
(
xi − a−i ∆t, tn+1

)
+

a−i
a+

i + a−i
ϕ̃
(
xi + a+

i ∆t, tn+1
)
. (2.4)
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A fully discrete central scheme is finally obtained by substituting (2.3) into (2.4)

ϕn+1
i =

a+
i

a+
i + a−i

(
ϕ̃
(
xi − a−i ∆t, tn

)
−∆tH

(
ϕ̃x

(
xi − a−i ∆t, tn

)))
(2.5)

+
a−i

a+
i + a−i

(
ϕ̃
(
xi + a+

i ∆t, tn
)
−∆tH

(
ϕ̃x

(
xi + a+

i ∆t, tn
)))

.

Utilizing the Taylor expansion ϕ̃
(
xi ± a±i ∆t, tn

)
= ϕ̃ (xi, t

n) ± a±i ∆tϕ̃±x , and assuming
that ϕ̃ satisfies the interpolation requirements ϕn

i = ϕ̃ (xi, t
n), equation (2.5) can be

rewritten as

ϕn+1
i = ϕn

i + ∆t
a+

i a−i
a+

i + a−i

[
ϕ̃+

x − ϕ̃−x
]

(2.6)

− ∆t

a+
i + a−i

[
a−i H

(
ϕ̃x

(
xi + a+

i ∆t, tn
))

+ a+
i H

(
ϕ̃x

(
xi − a−i ∆t, tn

))]
.

Here ϕ̃±x denotes the one-sided reconstruction of the derivative at xi. A Godunov-type
semi-discrete method for approximating the solution of (2.1) is obtained by taking the
limit ∆t → 0 in (2.6) (see [19, Eq. (3.44)])

d

dt
ϕi (t) = − 1

a+
i + a−i

[
a−i H

(
ϕ′+i
)

+ a+
i H

(
ϕ′−i
)]

+
a+

i a−i
a+

i + a−i

(
ϕ′+i − ϕ′−i

)
. (2.7)

Even though the flux on the right hand side of 2.7 was originally presented in [19],
Kurganov et. al. did not investigate its properties. We now state a theorem establishing
the monotonicity of this flux. The proof is given in the appendix.

Theorem 2.1 Assume that H ∈ C2 and that H is convex. Then

HKNP
(
u+, u−

)
=

1

a+ + a−
[
a−H

(
u+
)

+ a+H
(
u−
)]
− a+a−

a+ + a−
(
u+ − u−

)
,

is a monotone flux, i.e., HKNP is a non-increasing function of u+ and a non-decreasing
function of u−.

Remarks.

1. The derivation of the semi-discrete scheme (2.7) does not depend on choice of
interpolants ϕ̃, so long as they are smooth at xi ± a±i ∆t during the time interval
[tn, tn+1]. The spatial order of accuracy of the scheme is determined by the
accuracy of the reconstruction of ϕ̃ as well as the accuracy of the ODE solver
used to solve (2.7). A suitable high-order reconstruction will be presented in
Section 2.2 below. To be precise, the scheme (2.7) does not require the
construction of the interpolant ϕ̃. All that is required is a reconstruction of the
point-values of the derivatives ϕ̃′±.
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xi xi+ τ xi+ 1xi− 1 xi+ 2

2ϕ +

xi+ 3xi− 2

1ϕ +

3ϕ +

Figure 2.2: The three interpolants used for the fifth-order reconstruction ϕ′+i . In this
example, because of the large gradient between xi+1 and xi+2, the interpolant ϕ− will
have the strongest contribution to the CWENO reconstruction at xi+τ .

2. In order to economize on storage space, and sometimes also reduce the
computations, it is possible to replace a+

i and a−i with
ai = max

{∣
∣H ′

(
ϕ′−i
)∣
∣ ,
∣
∣H ′

(
ϕ′+i
)∣
∣
}
. In this case, (2.7) becomes

d

dt
ϕi (t) = −1

2

[
H
(
ϕ′+i
)

+ H
(
ϕ′−i
)]

+
ai

2

(
ϕ′+i − ϕ′−i

)
. (2.8)

This simpler formulation was presented by Kurganov and Tadmor in [20, Eq.
(4.10)]. We denote the right hand side of (2.8) by −HKT

(
ϕ′+i , ϕ′−i

)
.

As an immediate consequence of Theorem 2.1, we have

Corollary 2.1 If H ∈ C2 and H is convex, then HKT (u+, u−) is a monotone flux.

2.2 A Fifth-Order Scheme

In order to obtain a fifth-order scheme from the general semi-discrete formulation (2.7),
we need a fifth-order approximation of the derivative ϕ′ and a suitable ODE solver. A
central-upwind interpolant at xi starts with a central interpolant defined either on the
interval [xi, xi+1] for a right-biased reconstruction, or [xi−1, xi] for a left-biased recon-
struction. This central interpolant is then evaluated at the location xi+τ := xi + τ∆x,
where τ is a parameter introduced for notational convenience. For the semi-discrete
scheme (2.7) we take τ = a+

i ∆t for the right-biased interpolant, and τ = a−i ∆t for the
left-biased interpolant.

For the right-biased interpolant at xi+τ (τ = a+
i ∆t), we use three cubic interpolants

ϕ′+k,i+τ , k = 1, 2, 3, defined on the stencil {xi−3+k, . . . , xi+k} (see Figure 2.2). Here

ϕ′+1,i+τ =
1

6∆x

[

(1− 3τ 2)ϕi−2 + 3(−2 + 2τ + 3τ 2)ϕi−1 (2.9)

+3(1− 4τ − 3τ 2)ϕi + (2 + 6τ + 3τ 2)ϕi+1

]

,

ϕ′+2,i+τ =
1

6∆x

[

(−2 + 6τ − 3τ 2)ϕi−1 + 3(−1− 4τ + 3τ 2)ϕi

+3(2 + 2τ − 3τ 2)ϕi+1 + (−1 + 3τ 2)ϕi+2

]

,
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ϕ′+3,i+τ =
1

6∆x

[

(−11 + 12τ − 3τ 2)ϕi + 3(6− 10τ + 3τ 2)ϕi+1

+3(−3 + 8τ − 3τ 2)ϕi+2 + (2− 6τ + 3τ 2)ϕi+3

]

.

A straightforward computation shows that ∀k, ϕ′+k,i+τ = ∂
∂x

ϕ (xi+τ )+O ((∆x)3). Also

the following linear combination is a fifth-order approximation of ϕ′+i

ϕ̂′+i+τ =
3∑

k=1

ckϕ
′+
k,i+τ =

∂

∂x
ϕ (xi+τ ) + O

(
(∆x)5

)
,

provided that the constants ck are taken as

c1 =
1

20

15τ 2 + 10τ − 6− 120τ 3 + 120τ 4

3τ 2 − 1
,

c2 = − 1

20

720τ 6 − 1080τ 5 + 660τ 4 + 60τ 3 − 81τ 2 − 64τ + 24

(3τ 2 − 1) (2− 6τ + 3τ 2)
,

c3 =
1

20

−15τ 2 + 4 + 120τ 4

2− 6τ + 3τ 2
.

In the limit τ → 0, ϕ′+k,i := limτ→0 ϕ′+k,i+τ = ∂ϕ

∂x
(xi) + O((∆x)3), with

ϕ′+1,i =
1

6∆x
(ϕi−2 − 6ϕi−1 + 3ϕi + 2ϕi+1) ,

ϕ′+2,i =
1

6∆x
(−2ϕi−1 − 3ϕi + 6ϕi+1 − ϕi+2) ,

ϕ′+3,i =
1

6∆x
(−11ϕi + 18ϕi+1 − 9ϕi+2 + 2ϕi+3) .

A right-biased fifth-order interpolant at xi is therefore given by

ϕ̂′+i =
3

10
ϕ′+1,i +

3

5
ϕ′+2,i +

1

10
ϕ′+3,i =

∂

∂x
ϕ (xi) + O

(
(∆x)5

)
. (2.10)

By symmetry, for the left-biased interpolant (τ = a−i ∆t) we use three cubic inter-
polants ϕ′−k,i+τ , k = 1, 2, 3, this time defined on the stencil {xi−4+k, . . . , xi−1+k}. In the

limit τ → 0, ϕ′−k,i := limτ→0 ϕ′−k,i+τ = ∂ϕ

∂x
(xi) + O((∆x)3), where

ϕ′−1,i =
1

6∆x
(2ϕi−3 − 9ϕi−2 + 18ϕi−1 − 11ϕi) ,

ϕ′−2,i =
1

6∆x
(−ϕi−2 + 6ϕi−1 − 3ϕi − 2ϕi+1) ,

ϕ′−3,i =
1

6∆x
(2ϕi−1 + 3ϕi − 6ϕi+1 + ϕi+2) .

In this case

ϕ̂′−i =
1

10
ϕ′−1,i +

3

5
ϕ′−2,i +

3

10
ϕ′−3,i =

∂

∂x
ϕ (xi) + O

(
(∆x)5

)
. (2.11)
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In order to suppress spurious oscillations, the coefficients in ϕ̂′±i are replaced by nonlinear
weights, which are set as to preserve the order of accuracy of the reconstruction in
smooth regions while automatically switching to the appropriate stencil in regions that
contain discontinuities. To this end we define the convex combination

ϕ′±i =
3∑

k=1

w±
k,iϕ

′±
k,i,

3∑

k=1

w±
k,i = 1. (2.12)

In smooth regions w+
1,i ≈ w−

3,i ≈ c+
1 = c−3 = 3/10, w+

3,i ≈ w−
1,i ≈ c+

3 = c−1 = 1/10 and
w±

2,i ≈ c±2 = 3/5, so the error is of the order O ((∆x)5). When the stencil supporting ϕ′±k,i

contains a discontinuity, the weight of the more oscillatory polynomial should vanish.
Following [16, 29], these requirements are met by setting

w±
k,i =

ω±k,i
∑

l ω
±
l,i

, ω±k,i =
c±k

(
ε + S±k,i

)p , (2.13)

where k, l ∈ {1, 2, 3}. We choose ε as 10−6 to prevent the denominator in (2.13) from
vanishing, and set p = 2 (see [16]). The smoothness measures S±k,i should be large when

ϕ is nearly singular. Following [16], we take S±k,i to be the sum of the L2-norms of the

derivatives on the stencil supporting ϕ′±k,i. We approximate the first derivative at xi

by ∆+ϕi/∆x, the second derivative by ∆+∆−ϕi±τ/(∆x)2, and define the smoothness
measure

Si [r, s] = ∆x

s∑

j=r

(
1

∆x
∆+ϕi+j

)2

+ ∆x

s∑

j=r+1

(
1

∆x2
∆+∆−ϕi+j

)2

. (2.14)

Then for the right-biased interpolant we have S+
1,i = Si [−2, 0], S+

2,i = Si [−1, 1] and
S+

3,i = Si [0, 2]. For left-biased interpolant we have S−1,i = Si [−3,−1], S−2,i = Si [−2, 0]
and S−3,i = Si [−1, 1]. We use the notation

ϕ′± = reconstruct ϕ′ (±, ϕn) , (2.15)

to denote the computation of the array
{
ϕ′±i
}

for all i from data ϕn at time tn, as given
by (2.12).

The following algorithm summarizes our fifth-order semi-discrete algorithm for ap-
proximatinng the solution of (2.7). The time integration is performed with a fourth-order
strong stability preserving (SSP) Runge-Kutta scheme [12].

Algorithm 2.1 Let F
(
ϕ′−i , ϕ′+i

)
denote the right hand side of (2.7). Then at each grid

node i,

ϕ′−0 = reconstruct ϕ′ (−, ϕn) , ϕ′+0 = reconstruct ϕ′ (+, ϕn)

ϕ(1) = ϕn +
1

2
∆tF

(
ϕ′−0 , ϕ′+0

)

ϕ′−1 = reconstruct ϕ′
(
−, ϕ(1)

)
, ϕ′+1 = reconstruct ϕ′

(
+, ϕ(1)

)
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ϕ(2) =
649

1600
ϕn − 10890423

25193600
∆tF

(
ϕ′−0 , ϕ′+0

)
+

951

1600
ϕ(1) +

5000

7873
∆tF

(
ϕ′−1 , ϕ′+1

)

ϕ′−2 = reconstruct ϕ′
(
−, ϕ(2)

)
, ϕ′+2 = reconstruct ϕ′

(
+, ϕ(2)

)

ϕ(3) =
53989

2500000
ϕn − 102261

5000000
∆tF

(
ϕ′−0 , ϕ′+0

)
+

4806213

20000000
ϕ(1)

− 5121

20000
∆tF

(
ϕ′−1 , ϕ′+1

)
+

23619

32000
ϕ(2) +

7873

10000
∆tF

(
ϕ′−2 , ϕ′+2

)

ϕ′−3 = reconstruct ϕ′
(
−, ϕ(3)

)
, ϕ′+3 = reconstruct ϕ′

(
+, ϕ(3)

)

ϕn+1 =
1

5
ϕn +

1

10
∆tF

(
ϕ′−0 , ϕ′+0

)
+

6127

30000
ϕ(1) +

1

6
∆tF

(
ϕ′−1 , ϕ′+1

)
+

7873

30000
ϕ(2)

+
1

3
ϕ(3) +

1

6
∆tF

(
ϕ′−3 , ϕ′+3

)

Remarks.

1. The smoothness measures (2.14) are not the same as those used in [15, 16].
There, a different normalization of the derivatives was used. Our smoothness
measures are approximations to the sum of the L2-norms of the first and second
derivatives of the interpolant on a stencil. In the cases we tested, our smoothness
measures produced comparable or smaller errors when compared with [15]. We
include a comparison between the results obtained with both forms of the
smoothness measures in Section 4.1.1.

2. From obvious reasons, the interpolant (2.10) is identical to the one used in the
upwind method of [15]. As far as the scheme itself is concerned, there is some
degree of similarity between the semi-discrete central scheme and upwind
schemes. It is important to note that for linear advection problems they boil
down to the same scheme. Indeed, if H(s) = s, then H ′ = 1. Hence a+

j = 1,
a−j = 0 and equation (2.7) becomes

d

dt
ϕj (t) = − 1

a+
j

[
a+

j H
(
ϕ′−i
)]

= −ϕ′−i . (2.16)

Solving (2.16) is equivalent to solving

d

dt
ϕj (t) = −HLF

(
ϕ′+i , ϕ′−i

)
,

with the Lax-Friedrichs flux

HLF
(
ϕ′+i , ϕ′−i

)
= H

(
1

2

(
ϕ′+i + ϕ′−i

)
)

− 1

2

(
ϕ′+i − ϕ′−i

)
= ϕ′−i .
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For this reason the schemes in [19] are called “central-upwind schemes”. Even in
this case of a linear advection problem, there still are some differences between
our scheme (Algorithm 2.1) and the scheme in [15]: the ODE solvers and the
smoothness measures are different. For more complicated Hamiltonians the
semi-discrete scheme (2.7) is different than the scheme in [15]. A comparison
between numerical results obtained with both schemes can be found in Section 4.

3. One can easily create a third-order semi-discrete central scheme from the general
one-dimensional formulation (2.7) by using a less accurate ODE solver and a
third-order interpolant. Indeed, a third-order version of the right-biased
(derivatives of the) interpolants can be written as a combination of two
polynomials, ϕ′j,i with j = 1, 2, that are constructed on the stencil
{xj+i−2, . . . , xj+i} (compare with (2.9)). A straightforward computation shows
that

ϕ′1,i = lim
τ→0

1

∆x

[(

−1

2
+ τ

)

ϕi−1 + (−2τ) ϕi +

(
1

2
+ τ

)

ϕi+1

]

=
1

2∆x
(ϕi+1 − ϕi−1) ,

ϕ′2,i = lim
τ→0

1

∆x

[(

−3

2
+ τ

)

ϕi + (2− 2τ) ϕi+1 +

(

−1

2
+ τ

)

ϕi+2

]

=
1

2∆x
(−3ϕi + 4ϕi+1 − ϕi+2)

satisfies ϕ′j,i = ∂ϕ (xi+τ ) /∂x + O ((∆x)2) for τ 6= 0 and j = 1, 2. The combination

ϕ′c,i = lim
τ→0

[

−1

3

2− 6τ + 3τ 2

−1 + 2τ
ϕ′1,i +

1

3

−1 + 3τ 2

−1 + 2τ
ϕ′2,i

]

=
2

3
ϕ′1,i +

1

3
ϕ′2,i

satisfies ϕ′c,i = ∂ϕ (xi+τ ) /∂x + O ((∆x)3) . The left-biased interpolants can be
easily derived by symmetry considerations.

3 Multi-Dimensional Schemes

3.1 A General Multi-Dimensional Scheme

Consider the d-dimensional HJ equation of the form

φt + H(∇φ) = 0, ~x =
(
x(1), . . . , x(d)

)
∈ R

d, (3.1)

subject to the initial data φ(~x, t = 0) = φ0(~x).
For simplicity we assume a uniform grid in space ∆x(1) = · · · = ∆x(d) = ∆x. We set

~α = (α1, α2, . . . , αd) ∈ Z
d, and let ~xα = ∆x~α, such that the k-th coordinate of ~xα equals

x
(k)
α = ∆xα(k), ∀1 ≤ k ≤ d. For example, in the conventional three-dimensional notation

with indices i, j and k and components (x, y, z), ~α = (i, j, k) and ~xα = (xi, yj, zk).
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Similarly to the one-dimensional setup, ϕn
α will denote the approximation of φ (xα, tn),

and for a fixed time tn, ∇ϕα will denote the approximation of ∇φ at xα.

Given ~xα, we define the volume Cα =
⊗d

k=1

[

x
(k)
α − ∆x

2
, x

(k)
α + ∆x

2

]

, and estimate the

local speeds of propagation ~a±α . For example, for a convex Hamiltonian these speeds in
the coordinate direction k are given by

a(k)+
α = max

Cα

{
∂H

∂x(k)
(∇ϕα) , 0

}

, a(k)−
α =

∣
∣
∣
∣
min
Cα

{
∂H

∂x(k)
(∇ϕα) , 0

}∣
∣
∣
∣
. (3.2)

Let ~ρ = (ρ(1), . . . , ρ(d)) denote the multi-index with components ρ(k) ∈ {+,−}, ∀k. We
also denote the index opposite to ~ρ by ρ̄, i.e. ρ̄ = −~ρ = (−ρ(1), . . . ,−ρ(d)), assuming the
standard algebraic operations between elements in Z. For any given ~ρ we define a vector
that encodes the maximum estimated speed of propagation in all coordinate directions
at ~xα as

~vρ
α =

(

ρ(1)a(1)ρ(1)

α , . . . , ρ(d)a(d)ρ(d)

α

)

. (3.3)

We then denote by ~xα+ρ the position ~xα + ~vρ
α∆t, and denote the approximation of φ at

~xα+ρ by ϕ̃α+ρ.

For example, if d= 3 and ~ρ = (+,−, +), then ~vρ
α =

(

a
(1)+
α ,−a

(2)−
α , a

(3)+
α

)

and ~vρ̄
α =

(

−a
(1)−
α , a

(2)+
α ,−a

(3)−
α

)

. In this case

ϕ̃α+ρ = ϕ̃
(
x(1)

α + a(1)+
α ∆t, x(2)

α − a(2)−
α ∆t, x(3)

α + a(3)+
α ∆t

)
.

Similarly to the one-dimensional case, we assume that the approximate solution at
time tn, ϕn

α is given, and that a continuous piecewise-polynomial interpolant ϕ̃(~x, tn)
was reconstructed from ϕn

α. The construction of ϕ̃(~x, tn) will be addressed below. The
interpolant ϕ̃(~x, tn) is then evolved to the next time step, tn+1, at the points ~xα+ρ, which
are located away from the propagating discontinuities assuming that the time step ∆t
is sufficiently small. According to (3.1), to first order in time, this evolution is given by
the Taylor expansion

ϕ̃
(
~xα+ρ, t

n+1
)

= ϕ̃ (~xα+ρ, t
n)−∆tH (∇ϕ̃ (~xα+ρ, t

n)) + O
(
∆t2
)
,

where ∇ϕ̃ (~xα+ρ, t
n) is an approximation of the derivative ∇φ at ~xα+ρ.

A fully discrete central scheme can then be constructed by computing a weighted
average of the evolved solution ϕ̃(~xα+ρ, t

n+1) for all values of ~ρ (compare with the one-
dimensional case (2.4)). The volume of the d-cube enclosed by ~xα+ρ for all values of ~ρ
divided by ∆t is

Vα =

d∏

k=1

(
a(k)+

α + a(k)−
α

)
.

For a given ~ρ, the volume enclosed by the corners ~xα+ρ and ~xα divided by ∆t is given
by the product of the components of ~vρ

α

|~vρ
α| =

d∏

k=1

a(k)ρ(k)

α .
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xα

, ρ=(+,−)xα+ρ

, ρ=(−,+)−xα+ρ−

|v ρ|α
−

|v ρ|α

Figure 3.1: A two-dimensional example of the objects associated with the location ~xα+ρ

for ~ρ = (+,−). The complement location ~xα+ρ̄ is shown, as well as the volumes |~vρ
α| and

|~vρ̄
α|. The thick rectangle encloses the volume Vα.

Clearly,
∑

ρ |~vρ
α| = Vα. See Figure 3.1 for a sketch of the two-dimensional setup. An

approximation of the solution ϕn+1
α is then obtained by averaging over all ϕ̃ (~xα+ρ, t

n+1).
Each term corresponding to a particular ~ρ is weighted by the diagonally opposite volume
|~vρ̄

α|, divided by Vα. Hence

ϕn+1
α =

1

Vα

∑

ρ

|~vρ̄
α|ϕ̃

(
~xα+ρ, t

n+1
)

(3.4)

=
1

Vα

∑

ρ

|~vρ̄
α| [ϕ̃ (~xα+ρ, t

n)−∆tH (∇ϕ̃ (~xα+ρ, t
n))] .

We now use a Taylor expansion in space

ϕ̃ (~xα+ρ, t
n) = ϕ̃ (~xα, tn) + ∆t~vρ

α · ∇ϕ̃ (~xα+ρ, t
n) + O

(
∆t2
)
,

where ∇ϕ̃ (~xα+ρ, t
n) is the evaluation of the gradient at ~xα associated with the recon-

struction at ~xα+ρ in the appropriate volume. Hence (3.4) can be written as

ϕn+1
α = ϕn

α +
∆t

Vα

∑

ρ

|~vρ̄
α| [~vρ

α · ∇ϕ̃ (~xα+ρ, t
n)−H (∇ϕ̃ (~xα+ρ, t

n))] .

In the limit ∆t → 0 we obtain our first form of the semi-discrete d-dimensional scheme:

d

dt
ϕα(t) =

1

Vα(t)

∑

ρ

|~vρ̄
α(t)| [~vρ

α · ∇ϕ̃α+ρ(t)−H (∇ϕ̃α+ρ(t))] (3.5)
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=
1

∏d

k=1

(

a
(k)+
α + a

(k)−
α

)

∑

ρ

(
d∏

k=1

a(k)ρ̄(k)

α

)

[~vρ
α · ∇ϕ̃α+ρ(t)−H (∇ϕ̃α+ρ(t))] .

To obtain a simpler formula, we let, for ρ(k) = ±, ϕ±
x(k) = lim∆t→0 ∂ϕ̃(~xα+ρ)/∂x(k), the

k-th component of∇ϕ̃ (~xα+ρ). Such a limit makes sense assuming that the reconstruction
of the derivatives is done direction-by-direction. Then the first sum on the RHS of (3.5)
becomes

1

Vα

d∑

k=1

∑

ρ

d∏

j=1

a(j)ρ̄(j)

α ρ(k)a(k)ρ(k)

α ϕ̃x(k)(~xα+ρ)

=
1

Vα

d∑

k=1

∑

ρ

d∏

j=1

a(j)ρ̄(j)

α

(
a(k)+

α ϕ+
x(k) − a(k)−

α ϕ−
x(k)

)

=
1

Vα

d∑

k=1

a(k)+
α a(k)−

α

(
ϕ+

x(k) − ϕ−
x(k)

)∑

ρ

d∏

j=16=k

a(j)ρ̄(j)

α

=
d∑

k=1

a
(k)+
α a

(k)−
α

a
(k)+
α + a

(k)−
α

(
ϕ+

x(k) − ϕ−
x(k)

)
∑

ρ

∏d
j=16=k a

(j)ρ̄(j)
α

∏d

j=16=k

(

a
(j)+
α + a

(j)−
α

)

=
d∑

k=1

a
(k)+
α a

(k)−
α

a
(k)+
α + a

(k)−
α

(
ϕ+

x(k) − ϕ−
x(k)

)
.

This gives the semi-discrete d-dimensional scheme

d

dt
ϕα(t) = − 1

Vα

∑

ρ

|~vρ̄
α|H

(
∇ϕ̃n

α+ρ

)
+

d∑

k=1

a
(k)+
α a

(k)−
α

a
(k)+
α + a

(k)−
α

(
ϕ+

x(k) − ϕ−
x(k)

)
. (3.6)

Remarks.

1. The d-dimensional semi-discrete scheme (3.5) is valid for any reconstruction of
∇ϕ, including reconstructions defined on d-dimensional stencils (for
two-dimensional examples see [6]). In contrast, (3.6) is valid only for
dimension-by-dimension reconstructions such as those described in Section 3.3
below. These dimension-by-dimension reconstructions are natural in the
semi-discrete setting, as they significantly simplify the form of the scheme.

2. As in the one-dimensional case, (3.5) and (3.6) are independent of the order of
the reconstruction. First- and second order- reconstructions can be found, e.g.,
in [19]. In Section 3.3 we develop a fifth-order dimension-by-dimension
reconstruction following the one-dimensional reconstruction of Section 2.2.

3. A proof of the monotonicity of the flux approximation in (3.6) can be obtained
via the method of proof of theorem 2.1 applied to each component. This
becomes particularly transparent when (3.6) is written out as in Section 3.2
below. Such a proof cannot directly use the definitions
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a
(k)+
α = maxCα

{
∂H

∂x(k) (∇ϕα) , 0
}

etc., where the maximum is taken over the
spatial domain Cα (see (3.2)). We must translate this definition into a maximum
over the range of function values similarly to the local Lax-Friedrichs flux. For
example, in two dimensions we define

a+ = max
u∈I(u−,u+)
C≤v≤D

{Hx (u, v) , 0} , a− =

∣
∣
∣
∣
∣

min
u∈I(u−,u+)
C≤v≤D

{Hx (u, v) , 0}
∣
∣
∣
∣
∣

b+ = max
A≤u≤B

v∈I(v−,v+)

{Hy (u, v) , 0} , b− =

∣
∣
∣
∣
∣

min
A≤u≤B

v∈I(v−,v+)

{Hy (u, v) , 0}
∣
∣
∣
∣
∣
,

where [A,B] is the range of u and [C,D] is the range of v. With such a choice of
a and b (and similarly in more than two space dimensions) the multi-dimensional
flux approximation is monotone.

4. The limit lim∆t→0∇ϕ̃(~xα+ρ) depends on ~ρ. Its value is estimated from the
reconstruction that corresponds to ~ρ.

5. When a
(k)+
α and a

(k)−
α are replaced by a

(k)
α = maxCα

{∣
∣ ∂H
∂x(k) (∇ϕα)

∣
∣
}
,

Vα = 2d
∏d

k=1 a
(k)
α = 2d|~vρ̄

α|. In this case the semi-discrete scheme (3.6) becomes

d

dt
ϕα(t) = − 1

2d

∑

ρ

H
(
∇ϕ̃n

α+ρ

)
+

1

2

d∑

k=1

a(k)
α

(
ϕ+

x(k) − ϕ−
x(k)

)
. (3.7)

A simpler one- and two-dimensional version of (3.7) was presented in [20] with a
less accurate estimate of the local speed of propagation, a = maxk a(k).

6. In practice, the speeds of propagation are estimated from the reconstruction of
∇ϕ̃n

α+ρ, i.e.,

a(k)+
α = max

ρ

{
∂H

∂x(k)
(∇ϕ̃α+ρ) , 0

}

, a(k)−
α =

∣
∣
∣
∣
min

ρ

{
∂H

∂x(k)
(∇ϕ̃α+ρ) , 0

}∣
∣
∣
∣
.

3.2 Two and Three Dimensional Schemes

For convenience, we write out (3.6) in two and three dimensions. In two dimensions, we
let α = (i, j) with coordinate notation (xi, yj), and let the local speeds of propagation

be
(
a±i,j, b

±
i,j

)
:=
(

a
(1)±
α , a

(2)±
α

)

. Explicitly, for convex H we use the estimates

a+
i,j = max

±

{
Hx

(
ϕ±x , ϕ±y

)
, 0
}

, a−i,j =

∣
∣
∣
∣
min
±

{
Hx

(
ϕ±x , ϕ±y

)
, 0
}
∣
∣
∣
∣
, (3.8)

b+
i,j = max

±

{
Hy

(
ϕ±x , ϕ±y

)
, 0
}

, b−i,j =

∣
∣
∣
∣
min
±

{
Hy

(
ϕ±x , ϕ±y

)
, 0
}
∣
∣
∣
∣
,
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where the max and min are taken over all permutations of ±. Then (3.6) becomes
(suppressing the indices i, j)

dϕ

dt
=

a+a−

(a+ + a−)

(
ϕ+

x − ϕ−x
)

+
b+b−

(b+ + b−)

(
ϕ+

y − ϕ−y
)

(3.9)

−
a−b−H

(
ϕ+

x , ϕ+
y

)
+ a+b−H

(
ϕ−x , ϕ+

y

)
+ a−b+H

(
ϕ+

x , ϕ−y
)

+ a+b+H
(
ϕ−x , ϕ−y

)

(a+ + a−) (b+ + b−)
.

If we replace a+
i,j and a−i,j by ai,j = max±

∣
∣
{
Hx

(
ϕ±x , ϕ±y

)}∣
∣ and similarly b+

i,j and b−i,j
by bi,j = max±

∣
∣
{
Hy

(
ϕ±x , ϕ±y

)}∣
∣, then (3.9) can be further simplified to (compare with

[20, Eq. (5.10)])

dϕi,j

dt
=

ai,j

2

(
ϕ+

x − ϕ−x
)

+
bi,j

2

(
ϕ+

y − ϕ−y
)

(3.10)

−1

4

[
H
(
ϕ+

x , ϕ+
y

)
+ H

(
ϕ−x , ϕ+

y

)
+ H

(
ϕ+

x , ϕ−y
)

+ H
(
ϕ−x , ϕ−y

)]
.

In three dimensions, we let α = (i, j, k) with coordinate notation (xi, yj, zk), and let

the local speeds of propagation be
(
a±i,j,k, b

±
i,j,k, c

±
i,j,k

)
:=
(

a
(1)±
α , a

(2)±
α , a

(3)±
α

)

. Thus a and

b are the obvious generalization of (3.8), and c is estimated as

c+
i,j,k = max

±

{
Hz

(
ϕ±x , ϕ±y , ϕ±z

)
, 0
}

, c−i,j,k =

∣
∣
∣
∣
min
±

{
Hz

(
ϕ±x , ϕ±y , ϕ±z

)
, 0
}
∣
∣
∣
∣
.

Then the semi-discrete scheme becomes (suppressing the indices i, j, k)

dϕ

dt
= − 1

(a+ + a−) (b+ + b−) (c+ + c−)
(3.11)

·
[
a−b−c−H

(
ϕ+

x , ϕ+
y , ϕ+

z

)
+ a−b−c+H

(
ϕ+

x , ϕ+
y , ϕ−z

)
+ a−b+c−H

(
ϕ+

x , ϕ−y , ϕ+
z

)

+a−b+c+H
(
ϕ+

x , ϕ−y , ϕ−z
)

+ a+b−c−H
(
ϕ−x , ϕ+

y , ϕ+
z

)
+ a+b−c+H

(
ϕ−x , ϕ+

y , ϕ−z
)

+a+b+c−H
(
ϕ−x , ϕ−y , ϕ+

z

)
+ a+b+c+H

(
ϕ−x , ϕ−y , ϕ−z

)]

+
a+a−

(a+ + a−)

(
ϕ+

x − ϕ−x
)

+
b+b−

(b+ + b−)

(
ϕ+

y − ϕ−y
)

+
c+c−

(c+ + c−)

(
ϕ+

z − ϕ−z
)
.

The three-dimensional scheme (3.11) can be further simplified by replacing a+
i,j, a

−
i,j by

ai,j and b+
i,j, b

−
i,j by bi,j similarly to the two-dimensional case, and also replacing c+

i,j, c
−
i,j

by ci,j = max±
∣
∣
{
Hz

(
ϕ±x , ϕ±y , ϕ±z

)}∣
∣. In this case

dϕi,j

dt
=

ai,j

2

(
ϕ+

x − ϕ−x
)

+
bi,j

2

(
ϕ+

y − ϕ−y
)

+
ci,j

2

(
ϕ+

z − ϕ−z
)

(3.12)

−1

8

[
H(ϕ+

x , ϕ+
y , ϕ+

z ) + H(ϕ+
x , ϕ+

y , ϕ−z ) + H(ϕ+
x , ϕ−y , ϕ+

z ) + H(ϕ+
x , ϕ−y , ϕ−z )

+H(ϕ−x , ϕ+
y , ϕ+

z ) + H(ϕ−x , ϕ+
y , ϕ−z ) + H(ϕ−x , ϕ−y , ϕ+

z ) + H(ϕ−x , ϕ−y , ϕ−z )
]
.
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3.3 A Dimension-by-Dimension 5th-order Reconstruction

The reconstructions ∇ϕ̃n
α+ρ can be easily computed in a direction-by-direction manner.

Such a direction-by-direction reconstruction is commonly used in upwind schemes [15],
and we have used this strategy with central schemes in [6]. Here we show a three-
dimensional example; generalizing this technique to more dimensions is straightforward.
Using the notation of Section 2.2, a three-dimensional fifth-order reconstruction is

• For each j, k: ϕ±x = reconstruct ϕ′ (±, ϕ∗,j,k)

• For each i, k: ϕ±y = reconstruct ϕ′ (±, ϕi,∗,k)

• For each i, j: ϕ±z = reconstruct ϕ′ (±, ϕi,j,∗)

where the subscript ’∗’ denotes the full range of an index: ϕ∗,j,k denotes the array
(ϕ1,j,k, . . . , ϕN,j,k), etc. We denote this operation in three dimensions as

∇ϕ̃± =
(
ϕ±x , ϕ±x , ϕ±x

)
= reconstruct ∇ϕ (±, ϕ) . (3.13)

The results of this operation are three-dimensional arrays with elements (ϕ±x )i,j,k,(
ϕ±y
)

i,j,k
and (ϕ±z )i,j,k.

Using this notation, we can turn Algorithm 2.1 into a three-dimensional scheme:
replace reconstruct ϕ′ (±, ϕn) with reconstruct ∇ϕ (±, ϕ), and let F denotes the right
hand side of (3.11). Applying this modified version of Algorithm 2.1 to each grid node
gives a three-dimensional scheme that is fifth-order in space and fourth-order in time.

4 Numerical Simulations

In this section we present simulations that demonstrate the features of the schemes we
developed in the previous sections. The scheme we test is the fifth-order semi-discrete
method in one (Section 4.1), two (Section 4.2), and three (Section 4.4) space dimensions.
Some of these examples are standard test cases that can be found, e.g., in [20, 28, 32].
In Section 4.3 we present a numerical stability study in two space dimensions.

We do not follow the practice in [15] of masking singular regions from our error
measurements, as we prefer to include the entire domain in our error estimate.

4.1 One-Dimensional Examples

A convex Hamiltonian

We start by testing the performance of our schemes in a convex problem. We approxi-
mate solutions of the one-dimensional equation

φt +
1

2
(φx + 1)2 = 0, (4.1)

subject to the initial data φ(x, 0) = − cos(πx) with periodic boundary conditions on
[0, 2]. The change of variables, u (x, t) = φx (x, t) + 1, transforms the equation into
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the Burgers’ equation, ut + 1
2
(u2)x = 0, which can be easily solved via the method of

characteristics [32]. The solution develops a singularity in the form of a discontinuous
derivative at time t = π−2.

The results of our simulations are shown in Figure 4.1. The order of accuracy of
these methods is determined from the relative L1 error, defined as the L1-norm of the
error divided by the L1-norm of the exact solution. These results along with the relative
L∞-norm before the singularity at T = 0.8/π2, and after the singularity at T = 1.5/π2

are given in Table 4.1.

Before singularity T = 0.8/π2

N relative L1-error L1-order relative L∞-error L∞-order

100 2.78×10−6 – 5.74×10−7 –
200 9.89×10−8 4.81 1.14×10−8 5.65
400 3.20×10−9 4.95 1.92×10−10 5.90
800 1.01×10−10 4.99 3.04×10−12 5.98

After singularity T = 1.5/π2

N relative L1-error L1-order relative L∞-error L∞-order

100 2.04×10−4 – 2.02×10−4 –
200 7.21×10−7 9.60 8.15×10−7 9.60
400 2.64×10−5 -5.19 -5.19×10−5 -6.65
800 2.55×10−5 0.05 0.05×10−5 0.10

Table 4.1: Relative L1-errors for the one-dimensional convex HJ problem (4.1) before
(T = 0.8/π2) and after (T = 1.5/π2) the singularity formation.

A non-convex Hamiltonian

In this example we deal with non-convex Hamilton-Jacobi equations. In one dimension
we solve

φt − cos (φx + 1) = 0, (4.2)

subject to the initial data φ (x, 0) = − cos (πx) with periodic boundary conditions on
[0, 2]. In this case (4.2) has a smooth solution for t . 1.049/π2, after which a singularity
forms. A second singularity forms at t ≈ 1.29/π2. The results are shown in Figures 4.2.
The convergence results before and after the singularity formation are given in Table 4.2.

Remark. Tables 4.1 and 4.2 show that after the singularity formation the order of conver-
gence deteriorates. In the following examples we will see that while a close examination
of the convergence properties confirms this observation, in all the cases we examined,
the error of the fifth-order semi-discrete scheme is less than the error of the other two
published fifth-order methods for HJ equations [6, 15].
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Figure 4.1: One-dimensional convex Hamiltonian (4.1). Left: the solution before the
singularity formation, T = 0.8/π2. Right: the solution after the singularity formation,
T = 1.5/π2. N = 40. The fifth-order approximation is plotted on top of the exact
solution.

Before singularity T = 0.8/π2

N relative L1-error L1-order relative L∞-error L∞-order

100 1.20×10−6 – 4.24×10−7 –
200 5.29×10−8 4.50 2.18×10−8 4.28
400 2.14×10−9 4.62 6.06×10−10 5.17
800 8.24×10−11 4.70 1.17×10−11 5.69

After singularity T = 1.5/π2

N relative L1-error L1-order relative L∞-error L∞-order

100 1.91×10−5 – 3.52×10−5 –
200 4.98×10−5 -1.38 4.27×10−5 -0.27
400 2.91×10−6 4.10 2.47×10−6 4.11
800 4.20×10−6 -0.53 3.63×10−6 -0.56

Table 4.2: Relative L1-errors for the one-dimensional non-convex HJ problem (4.2)
before (T = 0.8/π2) and after (T = 1.5/π2) the singularity formation.
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Figure 4.2: One-dimensional non-convex Hamiltonian (4.2). Left: The solution before
the singularity formation, T = 0.8/π2. Right: The solution after the singularity forma-
tion, T = 1.5/π2. N = 40. The fifth-order approximation is plotted on top of the exact
solution.

4.1.1 A comparison with existing fifth-order WENO-based methods

In Figure 4.3 we compare the error of our new fifth-order semi-discrete scheme (Algo-
rithm 2.1) with our fully-discrete scheme [6], and with the upwind WENO method of
[15] (with a local Lax-Friedrichs flux). We also present results obtained with the method
of [15] where the local Lax-Friedrichs flux was replaced by the semi-discrete central flux
(2.7), which compares our smoothness measures with those of [15].

We see that before the singularity formation the L1-error of our semi-discrete method
is as much as an order of magnitude smaller than the L1-error of the methods in [6] and
[15]. The method of [15] with the flux (2.7) yields somewhat smaller errors for large grid
spacing for the convex Hamiltonian, but becomes comparable to our method as the grid
spacing decreases. For the non-convex Hamiltonian the method of [15] with flux (2.7)
has larger errors than Algorithm 2.1. We take this as indication that the smoothness
measures in [15] may be slightly better for large grid spacing and some Hamiltonians.

After the formation of the singularity the behavior of the error in both methods that
are based on the flux (2.7) is more erratic than the other two methods. Nonetheless,
the methods that use the flux (2.7) have errors that are sometimes dramatically smaller
than the other two methods. At no time is the error of methods using the flux (2.7)
larger than that of the other two methods. Further comparisons are done in the next
example and in Section 4.3. A theoretical study of the convergence of these schemes is
beyond the scope of this work and is left for the future.

A linear advection equation

In this example ([15] with a misprint, corrected in [34]) we solve the one-dimensional
linear advection equation, i.e., H (φx) = φx. We assume periodic boundary conditions
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Figure 4.3: Convergence results for the convex Hamiltonian (4.1) (top) and non-convex
Hamiltonian (4.2) (bottom). The relative L1-errors are plotted against the number of
grid nodes. “x”: our semi-discrete fifth-order method (Algorithm 2.1). “+”: the fifth-
order method of [6]. “o”: the fifth-order method of [15] with a local Lax-Friedrichs flux.
“�”: the fifth-order method of [15] with the flux (2.7). Left: Before the singularity.
Right: After the singularity.
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on [−1, 1], and take the initial data as φ (x, 0) = g (x− 0.5) on [−1, 1], where

g (x) = −
(√

3

2
+

9

2
+

2π

3

)

(x + 1) + h(x),

h(x) =







2 cos
(

3π
2

x2
)
−
√

3, −1 < x < − 1
3
,

3/2 + 3 cos (2πx) , − 1
3

< x < 0,
15/2− 3 cos (2πx) , 0 < x < 1

3
,

(28 + 4π + cos (3πx)) /3 + 6πx (x− 1) , 1
3

< x < 1.

(4.3)

The results of our semi-discrete fifth-order method (Algorithm 2.1) are shown in
Figure 4.4, where it is compared with the fifth-order methods of [6] and [15]. The semi-
discrete method (Algorithm 2.1) shows reduced dissipation compared to the method in
[15]. In [6] we showed that the fully-discrete fifth-order method we developed there is
more stable than the method of [15] from the point of view of being able to use larger
time steps. The numerical results here are based on fitting to each scheme its optimal
time-step, hence the reduced dissipation for the fully-discrete scheme [6].

4.2 Two-Dimensional Examples

A convex Hamiltonian

In two dimensions we solve a problem similar to (4.1)

φt +
1

2
(φx + φy + 1)2 = 0, (4.4)

which can be reduced to a one-dimensional problem via the coordinate transformation(
ξ
η

)

=

(
1/2 1/2
1/2 −1/2

)(
x
y

)

. The results of the second-order calculations for the

initial data φ (x, y, 0) = − cos (π(x + y)/2) = − cos (πξ) are shown in Figure 4.5. The
convergence rates for the two-dimensional fifth-order scheme (3.9) before and after the
singularity are shown in Table 4.3.

A non-convex Hamiltonian

The two-dimensional non-convex problem, which is analogous to the one-dimensional
problem (4.2), is

φt − cos (φx + φy + 1) = 0. (4.5)

We assume the initial data φ (x, y, 0) = − cos (π(x + y)/2), and periodic boundary con-
ditions. The results are shown in Figure 4.6. The convergence results for the two-
dimensional fifth-order scheme (3.9) before and after the singularity formation are given
in Table 4.4.



22 S. Bryson and D. Levy

−1 −0.5 0 0.5 1
−6

−5

−4

−3

−2

−1

0
t = 2

−1 −0.5 0 0.5 1
−6

−5

−4

−3

−2

−1

0
t = 8

−1 −0.5 0 0.5 1
−6

−5

−4

−3

−2

−1

0
t = 16

−1 −0.5 0 0.5 1
−6

−5

−4

−3

−2

−1

0
t = 32

−0.8 −0.6 −0.4 −0.2
−4

−3.5

−3

−2.5

−2

−1.5
t = 32

0.6 0.7 0.8 0.9 1
−2

−1.8

−1.6

−1.4

−1.2

−1

t = 32

Figure 4.4: One-dimensional linear advection, (4.3). T = 2, 8, 16, 32. N = 100. “x”:
our semi-discrete fifth-order method (Algorithm 2.1). “+”: the fifth-order method of
[6]. “o”: the fifth-order method of [15] with a local Lax-Friedrichs flux. In the bottom
two pictures we zoom on two of the peaks in the solution at T = 32.
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Before singularity T = 0.8/π2

N relative L1-error L1-order relative L∞-error L∞-order

50 3.38×10−5 – 3.66×10−7 –
100 1.90×10−6 4.15 5.30×10−9 6.11
200 7.35×10−8 4.69 6.02×10−11 6.46

After singularity T = 1.5/π2

N relative L1-error L1-order relative L∞-error L∞-order

50 8.68×10−4 – 1.60×10−5 –
100 3.06×10−4 1.50 2.88×10−6 2.47
200 2.77×10−5 3.46 8.29×10−8 5.12

Table 4.3: Relative L1- and L∞-errors for the two-dimensional convex HJ problem (4.4)
before and after singularity formation, computed with (3.9) integrated in time as in
Algorithm 2.1, with the fifth-order reconstruction of Section 3.3.
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Figure 4.5: Two-dimensional convex Hamiltonian, (4.4). Left: the solution before the
singularity formation, T = 0.8/π2. Right: the solution after the singularity formation,
T = 1.5/π2. N = 40× 40. The solution is computed with (3.9) integrated in time as in
Algorithm 2.1, with the fifth-order reconstruction of Section 3.3.
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Before singularity T = 0.8/π2

N relative L1-error L1-order relative L∞-error L∞-order

50 1.70×10−5 – 6.04×10−8 –
100 1.69×10−6 3.33 5.20×10−9 3.54
200 8.16×10−8 4.37 1.17×10−10 5.47

After singularity T = 1.5/π2

N relative L1-error L1-order relative L∞-error L∞-order

50 2.63×10−3 – 9.55×10−6 –
100 3.40×10−4 2.95 1.52×10−6 2.65
200 7.20×10−5 2.24 2.72×10−7 2.49

Table 4.4: Relative L1- and L∞-errors for the two-dimensional non-convex HJ problem
(4.5) before and after the singularity formation, computed with (3.9) integrated in time
as in Algorithm 2.1, with the fifth-order reconstruction of Section 3.3.
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Figure 4.6: Two-dimensional non-convex Hamiltonian, (4.4). Left: the solution before
the singularity formation, T = 0.8/π2. Right: the solution after the singularity forma-
tion, T = 1.5/π2. N = 40× 40. The solution is computed with (3.9) integrated in time
as in Algorithm 2.1, with the fifth-order reconstruction of Section 3.3.
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A fully two-dimensional example

To check the performance of our method on fully two-dimensional problems we solve a
test problem which we introduced in [4]:

φt + φxφy = 0, (x, y) ∈ [−π, π]× [−π, π], (4.6)

subject to the initial data φ (x, y, 0) = sin (x) + cos (y) and to periodic boundary
conditions. The exact solution for this problem is given implicitly by φ (x, y, t) =
− cos (q) sin (r) + sin (q) + cos (r) where x = q − t sin (r) and y = r + t cos (q). This
solution is smooth for t < 1, continuous for all t and has discontinuous derivatives for
t ≥ 1. The results of our simulations at times T = 0.8, 1.5, are shown in Figure 4.7.
For comparison we show in Figure 4.8 the results obtained for the same problem with
our fully-discrete method [6]. The convergence results for the fifth-order method (3.9)
before the singularity formation are given in Table 4.5 and confirm the expected order
of accuracy.

Before singularity T = 0.8
N relative L1-error L1-order relative L∞-error L∞-order

50 2.39×10−6 – 1.34×10−8 –
100 8.52×10−8 4.81 1.40×10−10 6.57
200 3.05×10−9 4.80 1.24×10−12 6.83

Table 4.5: Relative L1-errors for the two-dimensional HJ problem (4.6) before the sin-
gularity formation. T = 0.8. The solution is computed with (3.9) integrated in time as
in Algorithm 2.1, with the fifth-order reconstruction of Section 3.3.

An eikonal equation in geometric optics

We consider a two-dimensional non-convex problem that arises in geometric optics [17]

{
φt +

√
φ2

x + φ2
y + 1 = 0,

φ (x, y, 0) = 1
4
(cos (2πx)− 1) (cos (2πy)− 1)− 1.

(4.7)

The results of our fifth-order method at time T = 0.6 are shown in Figure 4.9, where
we see the sharp corners that develop in this problem.

An optimal control problem

We solve an optimal control problem related to cost determination [32]. Here the Hamil-
tonian is of the form H(x, y,∇φ):

{
φt − sin (y)φx + sin (x) φy + |φy| − 1

2
sin2 (y)− 1 + cos (x) = 0,

φ (x, y, 0) = 0.
(4.8)

The result of our fifth-order semi-discrete scheme at time T = 1 is shown in Figure 4.10.
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Figure 4.7: Fully two-dimensional Hamiltonian, (4.6). Left: the solution before the
singularity formation, T = 0.8. Right: the solution after the singularity formation,
T = 1.5. N = 50 × 50. The solution is computed with (3.9) integrated in time as in
Algorithm 2.1, with the fifth-order reconstruction of Section 3.3.
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Figure 4.8: The fully two-dimensional Hamiltonian computed with the method in [6]
after the singularity formation, T = 1.5. N = 50× 50.
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Figure 4.10: Two-dimensional optimal control problem, (4.8). An approximation with
our semi-discrete fifth-order method (3.9) is shown at T = 1. N = 40× 40.
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4.3 A Stability Study

In this section we present a stability study, checking the stability properties of the
two-dimensional semi-discrete fifth-order method. We compute the relative L1 errors
for various examples while varying the CFL number. In Figure 4.11 we compare the
results obtained with our fifth-order scheme with the fully-discrete method [6], and
with the upwind method of [15] using a local Lax-Friedrichs flux. As expected, the
stability properties of the method (3.9) are similar to the stability properties of the
upwind WENO method of [15], though our new method (3.9) enjoys smaller L1 errors
and hence is more accurate.

4.4 Three-Dimensional Examples

Finally, we solve a couple of three-dimensional problems with the scheme (3.11) inte-
grated in time as in Algorithm 2.1, with the fifth-order reconstruction (3.13). We start
with a convex problem

φt +
1

2
(φx + φy + φz + 1)2 = 0, (4.9)

subject to the initial data φ (x, y, z, 0) = − cos (π(x + y + z)/3). The convergence results
for the scheme (3.11) before and after the singularity formation are given in Table 4.6.
We also use (3.11) to approximate the solution of the non-covex problem

φt − cos (φx + φy + φz + 1) = 0, (4.10)

with the same initial data. The convergence rates are shown in Table 4.7.

Before singularity T = 0.5/π2

N relative L1-error L1-order relative L∞-error L∞-order

25 1.04×10−4 – 3.10×10−8 –
50 6.52×10−6 3.99 2.66×10−10 6.87
100 3.74×10−7 4.12 2.02×10−12 7.04

After singularity T = 1.5/π2

N relative L1-error L1-order relative L∞-error L∞-order

25 1.40×10−3 – 9.76×10−6 –
50 1.80×10−4 2.95 4.15×10−6 1.23
100 1.26×10−4 0.51 6.94×10−7 2.58

Table 4.6: Relative L1- and L∞-errors for the three-dimensional convex HJ problem
(4.9) before and after the singularity formation, computed with (3.11) integrated in
time as in Algorithm 2.1, with the fifth-order reconstruction (3.13).
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Figure 4.11: Stability of the two-dimensional semi-discrete methods. N = 100 × 100.
“x”: our semi-discrete fifth-order method (3.9). “+”: our fully-discrete fifth-order
method [6]. “o”: the fifth-order upwind method of [15] with a local Lax-Friedrichs
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Upper right: fully 2D Hamiltonian (4.6). Middle row: convex Hamiltonian (4.4), be-
fore the singularity (left) and after the singularity (right). Bottom row: non-convex
Hamiltonian (4.5), before the singularity (left) and after the singularity (right).
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Before singularity T = 0.5/π2

N relative L1-error L1-order relative L∞-error L∞-order

25 9.10×10−5 – 2.58×10−8 –
50 3.85×10−6 4.56 2.27×10−10 6.83
100 1.77×10−7 4.45 1.53×10−12 7.21

After singularity T = 1.5/π2

N relative L1-error L1-order relative L∞-error L∞-order

25 9.99×10−4 – 6.60×10−7 –
50 1.09×10−4 3.20 5.25×10−7 0.33
100 1.07×10−5 3.34 6.13×10−8 3.01

Table 4.7: Relative L1- and L∞-errors for the three-dimensional non-convex HJ problem
(4.10) before and after the singularity formation, computed with (3.11) integrated in
time as in Algorithm 2.1, with the fifth-order reconstruction (3.13).

Appendix A: A Proof of Theorem 2.1

Proof. Let H (u) ∈ C2 be convex (H ′′(u) ≥ 0 or H ′′ (u) ≤ 0). We need to show that
the flux

HKNP
(
u+, u−

)
=

1

a+ + a−
[
a−H

(
u+
)

+ a+H
(
u−
)]
− a+a−

a+ + a−
(
u+ − u−

)
,

is a non-increasing function of u+ and a non-decreasing function of u−. Here a+ and
a− are defined as

a+ = max
u∈I(u−,u+)

{H ′ (u) , 0} , a− = min
u∈I(u−,u+)

|{H ′ (u) , 0}| ,

where I (a, b) is the closed interval with endpoints a and b. The proof for u+ is
discussed in detail. The proof for u− is similar.
Let u+

1 > u+
2 . Define the difference

D = HKNP
(
u+

1 , u−
)
−HKNP

(
u+

2 , u−
)

=
1

a+
1 + a−1

[
a−1 H

(
u+

1

)
+ a+

1 H
(
u−
)]
− a+

1 a−1
a+

1 + a−1

(
u+

1 − u−
)

− 1

a+
2 + a−2

[
a−2 H

(
u+

2

)
+ a+

2 H
(
u−
)]

+
a+

2 a−2
a+

2 + a−2

(
u+

2 − u−
)
.

We will prove that D ≤ 0. First, we rewrite D as the difference

D = G
(
u+

1

)
−G

(
u+

2

)
,

where for fixed u−, G(u) is defined as

G (u) = A (u)
[
H (u)−H

(
u−
)
− a+ (u)

(
u− u−

)]
,
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with

A (u) =
a− (u)

a+ (u) + a− (u)
,

and

a+ (u) = max
u∈I(u−,u)

{H ′ (u) , 0} , a− (u) = min
u∈I(u−,u)

|{H ′ (u) , 0}| .

Since u+
1 > u+

2 , the requirement D ≤ 0 is equivalent to G′ (u) ≤ 0. Because H is
convex (so the extrema of H ′ on an interval occur at the endpoints of that interval),
a± ∈ C1 so we can differentiate

G′ (u) = A′ (u)
[
H (u)−H

(
u−
)
− a+ (u)

(
u− u−

)]

+A (u)
[
H ′ (u)− a+′ (u)

(
u− u−

)
− a+ (u)

]
.

By the mean value theorem, there exists a ξ (u) ∈ I (u−, u) such that
H ′ (ξ (u)) (u− u−) = H (u)−H (u−), and hence

G′ (u) = A′ (u)
(
H ′ (ξ (u))− a+ (u)

) (
u− u−

)
− A (u) a+′ (u)

(
u− u−

)

+A (u)
(
H ′ (u)− a+ (u)

)

= B (u)
(
u− u−

)
+ A (u)

(
H ′ (u)− a+ (u)

)
,

where B (u) = A′ (u) (H ′ (ξ (u))− a+ (u))− A (u) a+′ (u) . Now

A′ (u) =
a+ (u) a−′ (u)− a− (u) a+′ (u)

(a+ (u) + a− (u))2 ,

and therefore

B (u) =
1

(a+ (u) + a− (u))2

[
a+ (u) a−′ (u)

(
H ′ (ξ (u))− a+ (u)

)

−a− (u) a+′ (u)
(
H ′ (ξ (u)) + a− (u)

)]
.

We are now in a position to prove that D ≤ 0. There are three cases to consider.
Case 1. u+

1 > u+
2 ≥ u−. In this case u− u− ≥ 0, and if u1 > u2 then [u−, u1] ⊃ [u−, u2]

so a± (u1) ≥ a± (u2) and a±′ (u) ≥ 0. Then

B (u) =
1

(a+ (u) + a− (u))2

[
a+ (u) a−′ (u)
︸ ︷︷ ︸

≥ 0

(
H ′ (ξ (u))− a+ (u)

)

︸ ︷︷ ︸

≤ 0

−
a− (u) a+′ (u)
︸ ︷︷ ︸

≥ 0

(
H ′ (ξ (u)) + a− (u)

)

︸ ︷︷ ︸

≥ 0

]

≤ 0,

and we can conclude that

G′ (u) =
B (u)
︸ ︷︷ ︸

≤ 0

(
u− u−

)

︸ ︷︷ ︸

≥ 0
+

A (u)
︸ ︷︷ ︸

≥ 0

(
H ′ (u)− a+ (u)

)

︸ ︷︷ ︸

≤ 0
≤ 0.
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Case 2. u− ≥ u+
1 > u+

2 . In this case u− u− ≤ 0, and if u1 > u2 then [u−, u1] ⊂ [u−, u2]
so a± (u1) ≤ a± (u2) and a±′ (u) ≤ 0. We therefore have B (u) ≥ 0 and

G′ (u) =
B (u)
︸ ︷︷ ︸

≥ 0

(
u− u−

)

︸ ︷︷ ︸

≤ 0
+

A (u)
︸ ︷︷ ︸

≥ 0

(
H ′ (u)− a+ (u)

)

︸ ︷︷ ︸

≤ 0
≤ 0.

Case 3. u+
1 > u− ≥ u+

2 . In this case the proof is straightforward. By the mean value
theorem, there exists a ξ1 ∈

[
u−, u+

1

]
and a ξ2 ∈

[
u+

2 , u−
]

such that
H ′ (ξ1)

(
u+

1 − u−
)

= H
(
u+

1

)
−H (u−), and H ′ (ξ2)

(
u+

2 − u−
)

= H
(
u+

2

)
−H (u−).

Hence

D =
a−1

a+
1 + a−1

(
H ′ (ξ1)− a+

1

) (
u+

1 − u−
)
− a−2

a+
2 + a−2

(
H ′ (ξ2)− a+

2

) (
u+

2 − u−
)

≤ 0.

This completes the proof that HKNP is non-increasing in u+. The proof that
HKNP (u+, u−) is non-decreasing in u− is the same with

G (u) =
a+ (u)

a+ (u) + a− (u)

[
H (u)−H

(
u+
)

+ a− (u)
(
u− u+

)]

for fixed u+.
�
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